EP 0 350 209 A2

Europédisches Patentamt
0’ European Patent Office @ Publication numbet: 0 350 209

Office européen des brevets A2

® EUROPEAN PATENT APPLICATION

@ Application number: 89306623.3

@) Date of filing: 29.06.89

@) Int. cl.4 GO6F 9/46

@) Priority: 06.07.88 US 215585

Date of publication of application:

10.01.90 Bulletin 90/02

Designated Contracting States:
DE FR GB

@) Applicant: NICOLET INSTRUMENT
CORPORATION
5225-3 Verona Road P.O. Box 4451
Madison, W1 53711-4495(US)

®) Inventor: Tromp, Marianne |
6918 Stratford Drive
Madison, W1 §3719(US)
inventor: Kisslinger, Jack
554 Hillcrest Drive
Verona, W1 53533(US)

Representative: Williams, Trevor John et al
J.A. KEMP & CO. 14 South Square Gray's Inn
London WC1R 5EU(GB)

@ Reai-time fourier transform spectrometry.

@ An analytical instrument designed for analysis of large sets of data, such as the interferogram light pattern in

a spectrometer, includes controlling
are each sequentially loaded with d
by assigning to the coprocessor a b

processors which control the operation of coprocessors. The coprocessors
ata and the assigned series of tasks. The coprocessors are assigned tasks
lock address location in controiling processor memory space where the task

has its data area. Thus the coprocessor is assigned to different logical addresses in memory space as different

tasks are assigned to the data. The

coprocessors also have the capability to execute microcode independent of

the controlling processors. The instrument is thus capable of near real-time operation while performing intensive

numerical analysis.

42

22
<r“(>i COPROCESSOR

. T ———— 24
m S STl MASTER (‘—v---ic‘ copaocsssoal
PROCESSOR

RN —
H 20 <T—(>{ COPROCESSOR l
28 ~26

- 40
18 V4 /4
™ DISK PRINTER PLOTTER

INTER-
\"J
PRg)LgESESOR - FEROMETER
CONTROL

f ﬁ g

OPTIC [SaAmPLE L OPIICT INTER-
DETECTOR |<,—‘-—-~-—- celL [FEROMETER!

/ 14 / \12

FIG. 1

Xerox Copy Centre

10

20

25

30

35

40

45

50

EP 0 350 209 A2

REAL-TIME FOURIER TRANSFORM SPECTROMETRY

Field of the invention

The present invention relates to electronic instrumenis for high speed data collection, processing and
analysis, in general, and relates, in particular, to a spectroscopic instrument for the analysis of a chemical
mixture of time varying nature, the instrument operating on a substantially real-time basis so that a source
of chemical emissions can be continuously monitored with the current data constantly available.

Background of the Invention

Several companies manufacture devices for the chemical analysis of samples known as Fourier
transform spectrometers. Such spectrometers generally include a source of time-varying radiation, which
may be infrared, microwave or other source, a chamber or other device in which the radiation interacts with
a sample of known or unknown composition, either solid, liquid, gas or plasma, and then a detector
responsive to the radiation which has passed through the chamber for detecting the radiation emitted from
the interaction. The detected signal is usually digitized for subsequent processing by a computer. The
object of such processing is to develop a spectral analysis that can be recognized by an operator as being
associated with certain chemical substituents of the sample.

Processing raw optical data into a spectral analysis is conventionally done with the use of the Fourier
transform algorithm. The Fourier transform converis time-domain functions, such as interferograms, into
recognizable frequency-domain functions that are represented as spectra. It is frequency-domain functions
that may be used in order to generate both qualitative and quantitative information concerning the chemical
constituents found in the sample.

To teke a time domain radiation source signal and convert that to a frequency-domain signal using a
Fourier transform analysis requires substantial computation. For accuracy, many thousands of inter-
ferometer, or radiation responsive, data points must be collected and digitized to produce the time domain
signal. Then a process known as "apodization” is typically needed to enhance the interferogram before the
Fourier transform can be performed. The Fourier transform is commonly performed using an algorithm
known as the fast Fourier transform algorithm. After such transformation, in order for useful information to
be obtained about a particular source having a certain background of known constituency, it may often be
necessary to subtract a background spectrum or to compare the calculated spectrum to a standard or
known spectrum. It may also be necessary to do such subiractions to remove irregularities or biases
introduced by either the instrument or environmental conditions. Of course, o be useful, the resultant data
must be analyzed and displayed in some useful fashion.

As with many instruments, in creating a Fourier transform interferometer spectrometer, there are several
design compromises which must be made. It is usually considered that a combination of both high
resolution and wide bandwidth is desirable, but to accomplish both of these objectives it is necessary to
increase the number of data points that must be collected and transformed. In order to obtain such a large
number of data points, the sampling must therefore be extensive and the overall speed of the device is
limited by the extensive computational analysis which must thereafier be performed on these data points. In
general, many prior art interferometers have required as long as five to ten minutes to process and
transform a single high resolution interferogram. While it has been possible to create faster instruments, in
order to do so sacrifices must be made in resolution or bandwidth which severely limit the utility of such an
instrument. As a result, it has been previously impossible to generate accurate instruments with large
bandwidth which are able to produce substantially real-time output. The most keen resiriction on such an
instrument is largely due to the time delay in data collection and the exiensive computer processing
necessary to create high resolution interferograms.

Prior efforts to reduce computation time while maintaining bandwidth resolution have been unsatisfac-
tory. While progress has been made in achieving faster computer operation and more efficient methodolo-
gies neither of these elements, or their combination, have so far enabled the high pracision broadband
interferometer capable of a significant resolution and a sample and computation time of, for example, one
second. Such an instrument is highly desirable for the study of dynamically changing samples. For
example, a useful application of such an instrument would be the analysis of exhaust gases from an

2

15

20

25

30

35

40

45

50

55

EP 0 350 209 A2

automobile. Such exhaust gases can change rapidly in content as the automobile engine passes through
various phases of operation. An instrument which is incapable of providing accurate spectra on a near real-
time basis cannot provide an accurate measurement of the time varying content of the exhaust gas of the
automobile.

One approach to the resolution of this problem would be to have multiple coprocessor units operating
simultaneously. Such an approach requires sophisticated control among the coprocessors so that they can
share suitable information. Such a system has an inherent complexity because of the need to itransport
large amounts of data through the system as the computation proceeds, and as different processors handle
different portions of the computational analysis.

Summary of the Invention

The present invention is summarized in that an instrument for analyzing the output of an interferometer
includes at least one controlling multi-tasking processor for controlling the interferometer and taking data
from the detector, and a plurality of coprocessors each operating under the control of the controlling
processor and each including coprocessor memory, the controlling processor connected through an
address generator to the memory of each coprocessor, the controlling processor causing the address
generator in each coprocessor to be changed periodically so that the data in the coprocessor memory is
sequentially switched between tasks.

The present invention is also summarized in that a method for an operating multiprocessor processing
machine includes a plurality of coprocessors each loaded with a set of data for a series of steps of
sequential analysis, and a central processor controlling the address assignment of each coprocessor such
that each coprocessor is sequentially assigned to a series of tasks until a final result is accomplished.

It is an advantage of the present invention in that a spectrometer is enabled which can perform
substantially real-time analysis of the operation of time-varying chemical mixtures.

ft is another object of the present invention to provide a methodology for general processing
instrumentation which allows the efficient utilization of multiple processors operating on common tasks.

Other objects, advantages, and features of the present invention will becoms apparent from the
following specification when taken in conjunction with the accompanying drawings.

Brief Description of the Drawings

Fig. 1 is a schematic diagram of an exhaust gas analyzer constructed in accordance with the present
invention.
Fig. 2 is a schematic diagram of a coprocessor in the instrument of Fig. 1.

Description o_f the Preferred Embodiment

Generally illustrated in Fig. 1 is the data flow and control schematic for a near real-time specirometer
instrument. The optical path of the instrument is only schematically illustrated but is conventional. An
interferometer 12 is utilized to generate a time-varying interference pattern of infrared light which is fed by
an optical path to a sample cell 14, The sample cell 14, when used with a continuingly varying source of
sample material, has suitable inputs and outputs (not shown) for the material to be sampled so that the
material in the sample cell is constantly cycling through. The optical output of the interaction between the
interferometer light pattern and the material in the sample cell is directed to a detector 16 suitable fo the
spectrum of the light source from the interferometer 12.

The interferometer 12 operates under the contro} of a digital interferometer control 18 which in turn is
controlled by a master processor 20. The master processor 20 is a controlling digital central processing
unit, such as a 1280, a 20-bit multi-tasking processor manufactured by the Nicolet [nstrument Corporation,
and also includes a bank of addressable memory. The master processor 20 has associated with it three
coprocessors 22, 24 and 26 each of which is connected to both the data and address buses of the master
processor 20. The master processor 20 is connected as a controlling processor to control the operation of
the three coprocessors 22, 24, and 26.

20

25

30

35

40

45

50

55

EP 0 350 209 A2

The detector 16 has its output connected to a slave processor 28. The slave processor 28 is also a
complete central processing unit, such as a second Nicolet 1280 processor, with attached addressable
memory. The slave processor 28 is a "slave"” in the sense that its software directs it to operate under the
general operating instructions provided from the master processor 20 to ensure that one processor has
control over overall system fiming. The slave processor 28 has associated with it three coprocessors 30, 32
and 34 which are also connected to the data and address bus of the slave processor 28. The slave
processor 28 is connected as a controlling processor to control the operation of the three coprocessors 30,
32, and 34. A disc storage medium 36 is connected so that it may be written to by the slave processor 28
and read from by the master processor 20. Also associated with the master processor 20 are suitable data
output and presentation devices such as a disc storage device 38, a printer 40, and a piotter 42.

lllustrated in Fig. 2 is a schematic diagram of the internal circuity of one of the coprocessors 22, 24, 26,
30, 32, or 34 as viewed in Fig. 1. The six coprocessors are essentially internally identical. Each of the
coprocessors includes a coprocessor control and input and output processor 50. The coprocessor control
50 receives an input from the controlling processor controlling the operation of the coprocessor, i.e. the
master processor 20 or the slave processor 28. The coprocessor control 50 operates to control the
operations of components of the coprocessor having a microcode program therein. These components
include a microcode memory 52 in which a set of local processing instructions, or microcode, may be
loaded and a microcode processor 54 which is capable of executing the microcode instructions. The
microcode processor 54 is connected to access the microcode memory 52 and also through appropriate
gating 56, which operates under control of the coprocessor control 50, to the coprocessor memory. The
coprocessor main memory is broken into two segments, referred to as the "up" memory segment and as
the "down™ memory segment. In Fig. 2 the up memory segment is indicated at 58 and the down memory
segment at 60. In this embodiment, these memory segments 58 and 60 are each blocks of 64K of memory.
Data flow to and from the up and down memory segments 58 and 60 is through data gating 62 which
connects the data buses from the up and down memory segments 58 and 860 to the dafa bus of the
controlling processor. Similarly, the address bus from the controlling processor is connected to the up and
down memory segments 58 and 60 through an address generator 64. The address generator 64 receives
input both from the coprocessor control 50 and directly from the controlling processor itself. The address
generator 64 controls the access of the controlling processor to the memory segments 58 and 60. In the
embodiment of Figs. 1 and 2, which are based on a 20-bit address bus, the processor memory is organized
into 64K blocks, and thus the addresses within any one block are addressed by the lower 16 bits of the
address bus. The next three address bits specify which of eight blocks of 64K are being addressed (the
highest bit not being used). Thus the address generator receives the three bits of the address bus and
determines from those whether one of the memory segments 58 or 60 is being addressed by the
processor. Thus the assignment of the coprocessor in memory space can be altered by altering the three
bits recognized by the address generator 64. The coprocessor of Fig. 2 also includes a
multiplierraccumulator 86 which is a multi-chip circuit particularly efficient for mathematically intense
computations. The multiplier'accumulator receives its controlling input from the microcode memory 52 and
is connected so that it can receive and transmit data to and from the up and down memory segments 58
and 60. An output from the microcode memory 52 also is connected to the address generator 64 to provide
an input thereto.

In its broadest operation, the instrument for real time spectrometry as illustrated in Fig. 1 operates to
provide a near real time analysis of the chemical constituencies of the gas in the sample cell 14. By "near
real time" in this instance it is meant that the sampling and analysis is done on an on-going and continuous
basis while the material to be measured passes through the sample cell 14. Such an on-going near real
time analysis is particularly useful for the analysis of continuous processes, such as monitoring the exhaust
gas from an automobile. By "near real time" as used in this sense, it is not meant that the analytical results
can be obtained instantaneously. As will be seen from a detailed discussion of the mechanics of the
operation of this device of Figs. 1 and 2, the resuits are, to some degree, time delayed by the analytical
operations which must be conducted on the raw interferometer data. Nevertheless, the resulis are obtained
continuously and may be monitored to determine the changes over time in the chemical constituents of the
mixture in the sample cell.

What the design of the instrument of Fig. 1 is intended to do is to break down the total processing
which must be done into a series of discrete opefations or tasks. These tasks are done in sequence,
beginning with the collection of the data and ending with output or display of the data in the format desired
by the user. These tasks involve varying degrees of processor time. In order that the instrument may
operate at near real time, the design of the instrument is such that various tasks are successively assigned
to coprocessors which have a given set of data measurements. At the termination of a given task, the

20

25

30

35

40

45

50

56

EP 0 350 209 A2

coprocessor and its associated data is then assigned a different task to operate on the same set of data.
Thus, for the six coprocessors (22, 24, 26, 30, 32, and 34) in the instrument of Fig. 1, at any given instant in
time as the instrument is continuously used, each of the coprocessors may be operating on a set of data
from a different one of six sequential samplings of data from the detector 10. As the output of any given set
of data is completed, a coprocessor is freed up and a new data sample set is taken. In this way, a
continuous processing stream is maintained at all times, performing all of the necessary tasks on a queue
of data samples which are proceeding through the instrument.

Thus, for example in the instrument of Fig. 1, it takes some finite time period to take a sample of the
detected light variation over time, as sensed by the detector 16, to gain sufficient data for a high resociution
Fourier transform analysis of the transmission pattern of the gas in the sample cell 14. For example, to
obtain the desired resolution it may be required to have a sampling period of as long as one second. During
the first one second time interval, the output of the detector 16, i.e. one set of data, would be loaded as an
input into the appropriate up or down memory segment 58 or 80 of a designated first coprocessor. Assume,
for purposes of this illustration, that the first input data set is loaded into coprocessor 30. To faciliate this
loading, the coprocessor 30 has its address generator 64 loaded with an address value by the slave
processor 28 so that the load data task as performed by the slave processor 28 loads input data into the
area in address space currently occupied by the memory segments 58 and 60 of the first coprocessor.
Then, during the one second input cycle, the slave processor 28 proceeds to load the data set from the
output of the detector 16 into its memory segment at an input address which is currently occupied by the
first coprocessor 30. Then, during the next one second sampling interval, the next coprocessor, for example
the coprocessor 32, would be assigned the task of data input. During that second interval, the coprocessor
32 would have its address generator 64 loaded with an appropriate address value by the slave controlling
processor 28 so that the memory in the coprocessor 32 is now assigned the area in address space where
the task of load data is instructed to place the data. The assigned address value would be the same one
previously assigned the memory of coprocessor 30. During the same time interval that the coprocessor 32
is assigned to the "input" task, the coprocessor 30, which has a full set of data stored in its memory, can
proceed to be assigned to the next task, which is to do a fast Fourier transform of the interferometer data
set to convert the signal from a time domain signal to a frequency domain signal. The performance of this
task would be initiated by the controlling processor 28 loading into the acdress generator 64 of the
coprocessor 30 a base address location assigning the data in the coprocessor 30 to the task of fast Fourier
transform analysis. During the time period in which this task is being performed, the normal processing
time-slice of the multi-tasking processor 28 is used as well as the fast Fourier transform microcode stored
in its microcode memory 52 and the numerical computational capabilities of the multiplier accumulator 66
which has been built into the coprocessor 30. At the end of the second data collection period, a third
interval would commence in which the coprocessor 34 would be assigned the task of data input collection
and its address generator would be assigned as a base address location the location of the location in
memory for the task of data input. During this third interval, the coprocessor 32 would be assigned the task
of fast Fourier transform analysis of the data it collected during its data input phase. During this third
interval, the coprocessor 30 would then be assigned the tasks of absorbance calculation and of writing its
resulting output calculation to disk 36 for storage. To accomplish this objective, the slave processor 28
would assign the address generator 84 of the coprocessor 30 with the base address location of the task
operating on the address space now assigned to the coprocessor 30 to subtract from the single-beam
spectrum the background and store the absorbance spectrum and to write the contents of its appropriate up
or down memory segment 58 or 60 into the disk 36. At the termination of the data collection cycle of the
coprocessor 34, i.e. the end of the third interval, the cycle would repeat with the coprocessor 30 then being
assigned the task of data input, the coprocessor 32 being pointed at a task of data output and the
coprocessor 34 directed at the task of fast Fourier transform analysis of its data.

The corresponding three tasks for the coprocessors 22, 24, and 28, are a first task of reading the data
from the disk 36, which is the equivalent of an input process. The second task is to perform a statistical
analysis on the stored absorbance spectrum which was written on the disk 38 and this analysis includes an
analysis for the quantitative amount of component gases contained in the sample cell 14, and may include a
comparison of the absorbance specirum with certain norms. The third task associated with these coproces-
sors is the output and recordation of the data on the appropriate output device such as the disk 38, the
printer 40 or the plotter 42.

The structure and method of use of the coprocessors 22, 24, 26, 30, 32, and 34 in the instrument of
Fig. 1 offers significant advantages in optimizing the rate of actual data analysis and flow through through
the instrument of Fig. 1. Note that at each of the coprocessors 30, the data is not transferred from
coprocessor to another coprocessor when a different task is to be performed. Instead, the data maintains

10

15

20

25

30

35

50

55

EP 0 350 209 A2

residency at the same coprocessor, and the coprocessor itself is assigned a different task. The controlling
processor 20 or 28 assigns the task to the coprocessor simply by changing the relative address in the
address generator 64. In other words, certain blocks of the addressable memory of each of the processors
20 and 28 are loaded with the program instructions for each of the tasks which are 1o be assigned to the
coprocessors. When the controlling processor 20 or 28 wishes to assign the appropriate coprocessor to a
task, it loads a value into the address generator 64 contained in that coprocessor with the particular 64K
block address recognized and addressed by the program of that task. The processor then executes the
program tasks in a time sharing fashion. Each task, or program, always operates on data at the same
location in addressable memory. Each time the task executes it operates on a different set of data not
because the data has been loaded in or out but simply because the data has been "moved” in address
space simply by changing the assignment in the address generator 64. In other words, the instrument
sequentially performs a series of tasks on data not by moving the data sequentially from task to task, but by
leaving the data in a given coprocessor and moving the coprocessor, in logical address space, from task to
task. Because of the large volume of data necessary in an analysis of the type conducted by the instrument
of Fig. 1, the overall processing of data moves faster when the data remains stationary than would be
possible if each coprocessor was uniquely assigned to a given task and the data had to be transferred from
coprocessor to coprocessor to be transferred from task to task.

An advantage of the coprocessor design and implementation of the instrument is that during any given
task, the processor has access both to the task programming located in controiling processor memory, and
also to implement the microcode located in the microcode memory 52 of the coprocessor. Thus the actual
programming implementation can make use, as appropriate, of local microcode processing particularly to
perform numerically intensive processing, independent of the controlling processor. The coprocessor can
thus be instructed to perform a local microcode processing instruction independently to completion and
then to inform the controlling processor, by setting a suitable flag or creating a suitable signal, to indicate
completion and readiness for the next task.

An important component of the use of coprocessors in this fashion is a program which is associated
with each of the controiling processors 20 and 28. This program is intended to handle the coprocessors by
assigning them tasks as appropriate. For logical reasons then, the program is referred to as the coprocessor
handler, abbreviated CPHNDLR. What follows below is a pseudo-code listing of the program CPHNDLR so
that the overall concept of its operation and use can be more fully understood.

CPHNDLR PSEUDO-CODE

Coprocessor Table Definition

One table per coprocessor.

[CP busy] True if CP is in use, false if free

[CP go] True if microcode is executing, false if not

[Task ID] iD of task using the CP, or of the previous task if CP is free. Set to -1 if never used.
[CP Device Device code needed for sending instructions to the CP

Code]

' [up][base Bit 4 is set if UP memory is active. The base address code indicates which of the
address code] | memory blocks the CP occupies. A -1 indicates that the CP is not in memory space.
{last CMD] Command last executed or attempted
[MCID address of the Microcode ID block associated with the CP
address]

{Copies of the
CP register
set]

Microcode Tabie Definition

20

25

30

35

20

45

50

55

EP 0 350 209 A2

[microcode
loaded]
[Initial CP
register
set]

[Size]

[Pass]

-1 if no code is loaded. Otherwise, it contains the inode of the file
containing the microcode.

Initial values for the CP registers, to be loaded each time before executing
the microcode.

The size code associated with the microcode. (Size would indicate the
number of data points on which an FFT would be performed, for example)
The pass code associated with the microcode. (All the microcode written
so far has only used a pass =0)

Program CPHNDLR

InitDone =

error=0

fofTasks=0

$of CPs=0

while (.no
read str
if (opti
verify
verify
if (it
$o0fCP
Initi
else
error
endif

elseif (

False

t. InitDone) do
ings from standard IO
on .eq. "I") then
that we can find the CP
that it acts like a CP
is a CP) then
s=#0fCPs+l
alize Coprocessor Table for this CP

="not a Cp"

option .eq. "M") then

10

20

25

30

35

40

45

50

55

EP 0 350 209 A2

if (#0fCPs .gt. 0) then
open microcode file
if (microcode exists) then
load microcode information into all activé CP's
set up microcode table
set microcode table address in the Coprocessor
Tables for each active CP
else
error="file not found"
endif
else
error="no CPs initialized"

endif

elseif (option .eq. "S")'then
open executable program file
if (file exists) then
start file execution as a child task
set task as the next sequential task for receiving
a Cp
task#=#0fTasks
tofTasks=#0fTasks+l
task ready(task#)=.false.
task done(task#)=.false.
set up a queued read from the child task
else
error="file not found"

endif

elseif (option .eq. “Q") then
InitDone=, true.

endif

if (error .ne. "none") then

transfer error to standard IO

20

25

30

35

40

45

50

55

EP 0 350 209 A2

endif
endwhile
task#=0

while(#ofTasks .gt. 0) do
i{f (CP interrupted) then

Find interrupting CP#
Update tables for the CP
Handle pending requests for that cp

else

if (QueuedRead(task#) .eq. done) then

get parameters for task request

if (command .eq. Ready") then
task ready(task#)=.true.
if (all tasks are ready) then

AllReady=.£rue.

endif
respond to task
requeue read from task

elseif (command .eq. "Done") then
eliminate the task
$ofTasks=%ofTasks - 1

elseif (command .eq. “GoWait") then
execute a GOCP command
if (error .eq.0) then

stack task# for when we get an interrupt

endif

elseif (command .eq. "Error") then
transfer error message to standard IO

respond to task

requeue read from task

else
execute the standard CP command

if (error .eq. “No free CPs" .and. command .eq.

10

15

20

25

30

35

40

45

50

55

EP 0 350 209 A2

“Attach") then
stack the request
elseif (error .eq. "Never will get a CP" .and.
command .eq. "Attach") then
return "Never will get a CP" to requesting task#
requeue task read
elgeif (error .eq. "CP busy" .and. command .eq.

“"Deattach”™) then
stack the request
elseif (error .ne. “none") then
abort=.true.
send message to standard IO
disable all CPs
else
respond to task'
requeue task read
endif
endif
check attach queue
check deattach queue

endif
endif

endwhile

Coprocessor Handler Commands

ATTACH(base address,upmem,CP#,Devcod):
Attach the appropriate coprocessor to the requesting task. Place the coprocessor at the base address
specified and active the 84K memory block indicated by upmem. CPHNDLR returns the Cp# and device
code to the calling routine. CPHNDLR determines which coprocessor to attach by finding a free coproces-
sor which has a task# one less than the task# of the requesting task. If the requesting task is task# 0, then a
previous task number of -1 or #ofTasks-1 is considered valid. if CPHNDLR cannot find a valid CP, it checks
to see if there might be one available in the future. One will be available in the future if the preceding task is
still active (i.e. the task is done flag is not set yet).
CHANGE(CP#,upmem):
Change the specified CP's active memory block to the up or down block as indicated by upmem.
DEATTACH(CP#):
Release the CP specified from the task which is placing the request. This frees the CP for an attach request
from the next task in the sequence.
DISABLE(CP#):

10

10

15

20

25

30

35

40

45

50

55

EP 0 350 209 A2

Disable the coprocessor specified. This is the opposite of initialize, in that it removes the coprocessor from
the list of available coprocessors.

DUMP(CP# filename,startAddress.#ofWords type,tagsize):

Dump the data in the CP specified into the file specified. Start dumping the data from the start address.
Type indicates whether the data are in 24-bit or 20-bit format. Tag size indicates the #of words of
information which needs to be dumped in addition to the data.

GETMICROCODE(CP# filename,size,pass):

Load the microcode found in the file with the name filename into the specified CP#. Use size and pass to
set those parameters in the microcode before loading. When done during initialization all active CPs are
ioaded with the microcode and no CP# needs to be specified. However, when requested by a task, the task
must first have been attached to CP.

GO(CP# flags):

Start the microcode running in the coprocessor after setting the coprocessor flags to the code specified.
The flags are tested by the microcode and can cause branching to different microcode routines.
GOWAIT(CP#,flags):

Start the microcode running in the coprocessor after setting the coprocessor flags to the code specified.
The flags are tested by the microcode and can cause branching to different microcode routines. Wait until
the microcode has finished executing before responding to the requesting task.

INITIALIZE(CP device#):

Determine if the device code passed does respond as though it were a coprocessor. If so, initialize the
appropriate table for that coprocessor.

LOAD(CP# filename startAddress #ofWords,type,tagsize):

Load the CP specified with data from the file specified. Place the data starting at the start address. Type
indicates whether the data are in 24-bit or 20-bit format. Tag size indicates the #of words of information
which needs to be loaded in addition to the data.

MOVE(fromCP#,toCP#,fromAddress, toAddress #ofWords):

Move data from one coprocessor to ancther.

REGISTERS(CP#,Registers):

Unload the 5 CP registers from the CP specified into the register locations indicated. The CP registers give
information about the data on which the microcode was executed.

STOPCP(CP#):

Stop the microcode execution in the CP specified.

In its operation, an executable set of instructions constructed in accordance with the coprocessor
pseudo-code as listed above provides an efficient management method for each of the controliing
processors 20 and 28 to control its coprocessors. To facilitate the understanding of the operation of this
method, it is necessary to review very briefly the functional operation of the program operating in
accordance with this pseudo-code.

At the beginning of the pseudo-code are the definitions for two tables to be maintained in controlling
processor memory. There is a table for each coprocessor and a table for each set of microcode. The
coprocessor table includes flags as to status of the coprocessor, i.e. whether it is in use or not, whether it is
executing microcode or not, and if it is executing, the table includes the ID number of the task that the
coprocessor is then executing. To facilitate proper sequential performance of the tasks, each task in
sequence is assigned a task number so that the controlling processor may assume proper sequence simply
by assigning the coprocessor to the task next numbered from that just performed. The coprocessor table
also indicates the block of the memory to which the coprocessor is presently assigned. If the coprocessor is
executing, there will be an indication of the last command which was executed by the coprocessor and the
address of the last microcode block associated with the coprocessor. The coprocessor table can also
contain duplicate copies of the coprocessor register set so that the command processor can evaluate the
operational status of the coprocessor at any instant.

The microcode table is intended to be associated with each set of microcode to be loaded into the
coprocessors in the system. [t contains a flag indicating whether or not the microcoede has been loaded and
also contains an initial value for the set of coprocessor registers to be loaded into the coprocessor before
executing the microcode. The size code for the microcode is also indicated, as well-as a pass code
associated with it.

The pseudo-code for actual executable program, entitlted CPHNDLR is also reprinted above. The
program first sets certain flags, such as number of tasks and number of coprocessors to zero, and then
begins an initialization routine. The initialization routine is entirely contained within @ WHILE . . . DO
statement ending with the command ENDWHILE. During that WHILE routine, the program evaluates the

11

70

75

20

25

30

35

40

45

50

55

EP 0 350 209 A2

option for initializations that are to occur. First the routine verifies that the coprocessors are operational and
responding to inquiries, and then initializes the coprocessor table for each coprocessor. Then the program
opens the microcode files, loads the set of microcode into the active coprocessors and sets up and
initializes the microcode table for each set of microcode. The initialization routine then opens the file
programs and sets up the tasks to be sequential tasks for receiving a coprocessor. Finally, the initialization
routine checks for error flags. Various error messages are set throughout the initialization routine if proper
conditions are not found in the system. At the end of the initialization routine, the coprocessors are all
operative, their appropriate coprocessor tables have been set up, and they have been properly loaded with
microcode. In addition, the tasks have been prepared for operation.

The next major routine in the program is the command calling for operation of the coprocessors. Again
this routine is a WHILE . . . DO statement ending with the instruction ENDWHILE. During this task
assignment routine, the first processing that is done is to monitor interrupts. Following the interrupt handling
and processing, the program then begins its task assignment routine in which the actual task assignments
are accomplished. The actual assignments of task depends on commands given to the program CPHNDLR
by the calling task. If the command is READY, then the routine monitors all tasks to make sure that they are
ready to operate and then responds to the task. If the command is DONE, indicating that the coprocessor
assigned a given task is done, then the task is removed from the queue and the number of tasks is
decremented by one. If the command is WAIT the program waits. If the command is an ERROR message,
then the error message is transferred to the input output of the system and the task is responded and
requeued. If there is an error message indicating no free coprocessors and there is a command indicating a
desire to attach a coprocessor to a task, then the request must be stacked pending a coprocessor being
available. If an error indicates that there will never be a coprocessor available, then the message needs to
be transmitted to the task and the task will not continue. If the coprocessor is busy, and the command
requests a DETACH, then the requests must be sent to stack until the coprocessor is available. The system
also checks for abort instructions. If the system execution has passed all the error checks and status
commands, then the system can respond to a task by attaching the coprocessor and enabling it to operate.

The next portion of the coprocessor pseudo-code is a description of the coprocessor handler com-
mands which are available. The first command is the ATTACH command. This is the command that
attaches a coprocessor to an appropriate one of the sequential tasks. Note that the attach command
includes as its first parameter a base address. This base address is the address which is ioaded into the
address register contained in the coprocessor and specifies the memory block at which the coprocessor is
initially placed in controlling processor memory space to begin operation. The program CPHNDLR tells the
calling routine, i.e. the task, the coprocessor number and the device code for the assigned coprocessor.
The coprocessor handler determines which coprocessor to attach by finding available coprocessor which
has a task number one less than the task number which is calling the task. If the coprocessor is not
available, the coprocessor handler routine will wait until the appropriate coprocessor to be next assigned to
this task is available for operation.

The CHANGE command simply allows the active memory biock to be changed from up to the down
block or vice versa as indicated.

The DEATTACH command is intended to release the coprocessor from the task which is placing the
request. This is done when a task is completed and is to free the coprocessor for the next task.

The DISABLE command is simply the opposite of INITIALIZE and moves the coprocessors from a list
of available coprocessors.

The DUMP command is use to dump data from a specified location in the coprocessor memory in a
specified disk file.

The command GET MICROCODE causes the microcode found in a specific file location to be loaded
into the specified coprocessor. The size and pass are determined from the microcode table. When this is
done during initialization, all active coprocessors are loaded and no coprocessor needs to be specified. If
specific microcode is requested by a task, the task must first have attached to the coprocessor. Using this
command calling tasks can load particular microcode into the coprocessor for a particular application.

The command GO starts the microcode running in the coprocessor.

The command GOWAIT starts the microcode running in the coprocessor after seiting certain coproces-
sor flags. The flags are then tested by the microcode. The coprocessor handler waits until the microcode is
finished before responding to the requesting task.

The command INITIALIZE determines if the coprocessor responds as though it is a coprocessor. In
other words, this is an initialization check.

The command LOAD loads the coprocessor specified with data from a file specified. This is the manner
in which initializing data or read data from an operation can be loaded into the memory location of a

12

15

20

25

30

35

40

45

50

55

EP 0 350 209 A2

specified coprocessor.

The command MOVE moves data from one coprocesscr to another. This would not be used in normal
operation but is available.

The command REGISTERS unloads the coprocessor registers from the coprocessor specified into
specific register locations. This allows a task to gain information about the status of the microcode
execution in a given coprocessor.

The command STOPCP stops microcode execution in a coprocessor as specified.

Thus it can thus be seen that the coprocessor handler is intended to monitor the status of the
coprocessors and to assign or attach coprocessors to specific tasks at given instance of time. The
coprocessors are assigned to sequential tasks so that they proceed through the operation of the processees
intended to be accomplished by the instrument. The attachment or assignment of any given coprocessor {o
a task is accomplished by assigning that coprocessor to the address block in memory space which
corresponds to the task number's data space. In other words, each coprocessor, for each subsequent task,
is assigned a different portion of memory, the assignment being accomplished by loading an address
location into the address register in the given coprocessor. In this way, the efficient transition of
coprocessor from task to task is most expeditiously accomplished without the need to transfer data from
coprocessor {0 Coprocessor.

It is to be understood that the present invention is not limited to the particular embodiment described
herein but embraces all such modified forms thereof as come within the scope of the following claims.

Claims

1. A method of operating in near real time an analytical instrument for receiving and processing sets of
analytical data, the instrument including at least one controlling processor with addressable memory and a
plurality of coprocessors, each including a microcode processor, coprocessor memory and an address
generator through which the controlling processor may address the coprocessor memory, the method
comprising the steps of
assigning a coprocessor to a sequential series of tasks including loading data, processing and analyzing
data, and outputting data, the assigning being accomplished by the controliing processor loading into the
address generator an address value indicating the location in controlling processor memory of the data area
for the task to be performed, and
synchronously assigning other coprocessors to the same sequential series of tasks in the same manner so
that different coprocessors are simultaneously assigned o sequential tasks on sequential sets of data.

2. A method as claimed in Claim 1 further comprising before the assigning step the step of initializing
each coprocessor and lcading each coprocessor with microcode so that each coprocessor can perform
microcode routines and analysis as called by a task independent of controlling processor.

3. A method as claimed in Claim 1 wherein in the assigning step, each sequential task is assigned a
task number and in assigning a coprocessor to a task, the controlling processor assigns the coprocessor 10
the task with the next sequential task number.

4, A method as claimed in Claim 1 wherein the loading task includes loading analytical data into
Coprocessor memary.

5. A method as claimed in Claim 4 wherein the tasks of processing and analyzing data are performed
on the data in coprocessor memory.

6. A method as claimed in Claim 5 wherein the task of outputting data includes reading the data out of
COprocessor memory.

7. A method as claimed in Claim 4 wherein during the task of loading data, the data is loaded into a
preselected standard location in memory so that the data is easily addressable by the task.

8. A method as claimed in Claim 1 wherein there are a sufficient number of coprocessors so that each
coprocessor in turn may be assigned the task of loading data, the remaining sequence of tasks being
performed by that coprocessor on the data before it is the turn of that coprocessor to return to the loading
data task.

9. A method as claimed in Claim 1 wherein the addressable memory of the controlling processor is
arranged in discrete blocks of standard size, so thad tasks may be developed independently of the
COProcessors.

10. A method as claimed in Claim 1 wherein the data is the interferogram from an interferometer and
the processing and analyzing task includes fast Fourier fransformation and statistical analysis.

11. An instrument to process and analyze the output of interferometer comprising

13

70

15

20

25

30

35

40

45

50

55

EP 0 350 209 A2

at least one controlling processor including associated addressable memory; and
a plurality of coprocessors connected to operate under the control of the controlling processor, each
coprocessor including an address generator connecting the memory of the coprocessor to the address bus
of the controlling processor, the address generator connected to receive address information from the
controlling processor so that the controlling processor can assign the coprocessor memory to a processing
task by loading an address location value into the address generator.

12. An instrument as claimed in Claim 11 wherein each processor includes microcode memory and a
microcode processor so that it can execute microcode instructions independent of the controlling processor.

13. An instrument as claimed in Claim 12 wherein each coprocessor also includes a
multiplier-accumulator connected to the microcode memory so as to be able to perform numerical
computations.

14. An instrument as claimed in Claim 11 wherein each coprocessor includes coprocessor memory into
which data may be loaded for processing.

15. An instrument as claimed in Claim 11 wherein each coprocessor includes two segments of
coprocessor memory either of which may be used for loading or processing data independent of the other
segment.

14

EP 0 350 209 A2

S E

¢l ~ \S \2
BREIEVOXEE 113D
- = —| ¥01D313d
|4
8l I A
™~
<= y0$S3IDOUd0D
1041NOD
NETELLOLEE ~ _gowum\m%mmﬁ_
EINN =
oN/ 8z <=5 4OSSID0UdOD
0 _C€
HOS$308400 om/ @Anv YOSSIDOYIOD
J/
4OSSID0OUdOD = l=> N_owwwww%&n_ Q 0t
| <= 3sia
vz~ I . /
YOS$SIDOYIOD |<=> @. __ Q¢
) v
(44 431101d Y3ILNIAd ¥sia L
8¢
7 —7

[A4

EP 0 350 209 A2

TO¥INOD SN SNOILYDO1
O/1 viva ss3Yaayv
YOSSIDOYd YOSSIDOYd JOSSIDOU
I @
»{ YJOLVYINIO
= ssqyagav [
T o
INIWO1s
v >l owaw K
ONILYO NMOd
=>| viva @ N_09
/O
¢9 —>| INIWDIS <A
AJOWIW dn
Mw N-g¢
= ONILYD
AYOWIW
O/1 om\ thv AA0UDIW
NV JOYLNOD Mw
JOSSIDOYIOD
05— ™ YOSSIDOYd

¢ Ol

YOIV INWNDIDY
Z431dINNW

99—/

N-zg

3AODOYIIW

Pl 4%

